±¨¸æÕªÒª£ºThis talk is devoted to a nonlocal dispersal logistic model with seasonal succession and free boundaries, where the free boundaries represent the expanding front and the seasonal succession accounts for the effect of two different seasons. Technically, this free boundary problem is much more difficult than the case without seasonal succession since the coefficients are all time periodic and piecewise continuous. We prove the existence and uniqueness of global solution, and then examine the long-time dynamical behavior and the criteria that completely determine when spreading and vanishing can happen, revealing some significant differences from the model without seasonal succession. Moreover, we use a ¡°thin-tail¡± condition on the kernel function to estimate the asymptotic spreading speed, which is achieved by solving the associated semi-wave problem.
±¨¸æÊ±¼ä£º2022Äê4ÔÂ26ÈÕ£¨Öܶþ£©ÏÂÎç15:00-16:30
±¨¸æµØµã£ºÏßÉÏ£¬ÌÚѶ»áÒéºÅ£º340378595
±¨¸æÈ˼ò½é£º
´÷±óÏ飬ÖÐÄÏ´óѧÊýѧÓëͳ¼ÆÑ§Ôº¶þ¼¶½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦£»ºþÄÏÊ¡Êýѧѧ»á³£ÎñÀíÊ¡¢¸ßµÈ½ÌÓýÓë´óѧÊýѧ¾ºÈü¹¤×÷ίԱ»á¸±Ö÷ÈÎίԱ£»ÖйúÊýѧ»áÉúÎïÊýѧרҵίԱ»á³£ÎñÀíÊ£»ÈëÑ¡ºþÄÏÊ¡ÐÂÊÀ¼Í121È˲ʤ³ÌÈËÑ¡£»Ö÷Òª´ÓÊÂʱÖÍ΢·Ö·½³ÌÓëÀëÉ¢¶¯Á¦ÏµÍ³¡¢ÖÖȺÉú̬ѧÓ봫Ⱦ²¡Ñ§¡¢·´Ó¦À©É¢·½³ÌµÄ¶¨ÐÔÀíÂÛÓëÓ¦ÓõÈÁìÓòµÄÑо¿£¬ÏȺóÔÚ¡¶Nonlinearity¡·¡¢¡¶J. Dyn. Diff. Equ.¡·¡¢¡¶J. Math. Anal. Appl.¡·¡¢¡¶Appl. Math. Model¡·¡¢¡¶Discrete Contin. Dyn. Sys.¡·¡¢¡¶Nonlinear Anal.¡·µÈ¹úÄÚÍâȨÍþÆÚ¿¯ÉÏ·¢±íѧÊõÂÛÎÄ160¶àƪ£¬Ö÷³Ö5Ïî¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿¡¢1Ïî¹ú¼Ò973¼Æ»®×Ó¿ÎÌâºÍ¶àÏîÊ¡²¿¼¶¿ÆÑпÎÌ⣬»ñµÃºþÄÏÊ¡¿Æ¼¼½ø²½Ò»µÈ½±ºÍºþÄÏÊ¡×ÔÈ»¿ÆÑ§Ò»µÈ½±¸÷1ÏÖ÷±à³ö°æ½Ì²Ä6²¿£¬2020Äê»ñµÃÈ«¹ú±¦¸Ö½ÌÓý»ù½ðÓÅÐã½Ìʦ½±¡£
±à¼£º¹þ¹¤´ó£¨Íþº££©Å·±¦ÓéÀÖÍßÂ×Î÷ÑÇ